Guide :

# 45 divided by 108

what is 45 divided by 108????

## Research, Knowledge and Information :

### 108 divided by 45 |Math problem 108 divided by 45 long division

108 divided by 45 . ... 108/45 divided by 2 » (108/45) ÷ 2 » 2.4 ÷ 2 = 1.2 . 108/45 long division below 108/45 conversion. Answer to math problems Solution Steps.

### What can divide into both 45 and 108 - Answers.com

What can divide into both 45 and 108? SAVE CANCEL. already exists. Would you like to merge this question ... 108 divided by 6 is 18 because 18 times 6 is 108.

### What does 108 divided by 12 equal - Answers.com

What does 108 divided by 12 equal? SAVE CANCEL. already exists. Would you ... What is 12 divided by 108? It is .111111111 - etc. Edit. Share to: Answer Bot.

### Long Division - Math Is Fun

Long Division. Below is the process written out in full. You will ... Divide this number by the divisor. The whole number result is placed at the top.

### Divide Two Numbers- WebMath

Divide Two Numbers - powered by WebMath ... This page will show you a complete "long division" solution for the division of two numbers.

### 4 Easy Ways to Do Long Division (with Pictures) - wikiHow

How to Do Long Division. A part of basic arithmetic, long division is a method of solving and finding the remainder for division problems that involve numbers with at ...

## Suggested Questions And Answer :

### what is the answer to 2x-y-2z=1, 4x+y-z=5, x+y+4z=-5 using matrices

what is the answer to 2x-y-2z=1, 4x+y-z=5, x+y+4z=-5 using matrices how to solve this math problem using matrices?   2  -1  -2  │  1   4   1  -1  │  5   1   1   4  │ -5 Multiply line 2 by 2.   2  -1  -2  │  1   8   2  -2  │ 10   1   1   4  │ -5 Subtract line 2 from line 1, replace line 1.  -6  -3   0  │ -9   8   2  -2  │ 10   1   1   4  │ -5 Multiply line 2 by 2.  -6  -3   0   │ -9  16   4  -4  │ 20    1   1   4  │ -5 Add line 3 to line 2, replace line 2.  -6   -3   0  │ -9  17   5   0  │ 15    1   1   4  │ -5 Multiply line 3 by 6.  -6  -3   0  │  -9  17   5   0  │  15   6   6  24  │ -30 Add line 1 to line 3, replace line 3.  -6  -3   0  │  -9  17   5   0  │  15   0   3  24  │ -39 Multiply line 1 by 5; multiply line 2 by 3. -30 -15   0  │ -45  51  15   0  │  45    0   3  24  │ -39 Add line 2 to line 1, replace line 1.  21    0   0  │   0  51  15   0  │  45    0   3  24  │ -39 Divide line 1 by 21.   1     0   0  │   0  51  15   0  │  45    0   3  24  │ -39 Multiply line 1 by 51.  51    0   0  │   0  51  15   0  │  45    0   3  24  │ -39 Subtract line 1 from line 2, replace line 2.  51   0   0  │   0   0  15   0  │  45   0   3  24  │ -39 Divide line 2 by 5.  51   0   0  │   0    0   3   0  │   9   0   3  24  │ -39 Subtract line 2 from line 3, replace line 3.  51   0   0  │   0    0   3   0  │   9   0   0  24  │ -48 Three-in-one: divide line 1 by 51, divide line 2 by 3, divide line 3 by 24.   1   0   0  │   0   0   1   0  │   3   0   0   1  │  -2 This shows that x = 0, y = 3, z = -2

### d square y divided by dt square+2 dy divided by dx_3y=sint, given that y=dy divided by dx=0 when t=0

d(dy/dt)/dt+2dy/dx-3y=sin(t); y=dy/dx=0 when t=0. y=f(t); x=g(t); dy/dt=f'; dx/dt=g'; d(dy/dt)/dt=f"; dy/dx * dx/dt=dy/dt, g'dy/dx=f'; dy/dx=f'/g'. f"+2f'/g'-3f=sin(t) or g'f"+2f'-3fg'=g'sin(t). f(0)=0; f'(0)/g'(0)=0, so f'(0)=0 (because dy/dx=0=f'(0)/g'(0)). Also, g'(0) cannot be zero, otherwise dy/dx would be undefinable at t=0. But for f'/g', we would have an expression on the left that could be solved as an auxiliary, or characteristic, equation and we could apply the homogeneous solution fH=Ae^-3t + Be^t where fH denotes the homogeneous component of the solution, and A and B are constants and the exponents are simply the solutions of m^2+2m-3=(m+3)(m-1)=0 giving us roots -3 and 1. If g'=1 then clearly g' is non-zero, which is a requirement. But if g'=1 x=g(t)=t+C where C is a constant and fH=Ae^-3t + Be^t. xH=gH=t, where H denotes the homogeneous component. Could this be a solution? This is the homogeneous component of the solution fH, where complete f=fH+fP, where fP denotes the particular solution. Now we need to resolve the right-hand side. This is the particular solution fP and we can assume that it is of the form fP=Csin(t)+Dcost(t). Applying the derivatives we have: Ccos(t)-Dsin(t) as 1st, -Csin(t)-Dcos(t) as 2nd. These must satisfy the original DE. So, -Csin(t)-Dcos(t)+(2/g')(Ccos(t)-Dsin(t))-3(Csin(t)+Dcos(t))=sin(t). Comparing coefficients: sin(t): -C-2D/g'-3C=1; cos(t): -D+2C/g'-3D=0. 4C+2D/g'+1=0 and 2C/g'=4D, so C=2Dg'. 8Dg'+2D/g'+1=0, 8Dg'^2+2D+g'=0. 2D(4g'^2+1)=-g'. This gives us fP=-sin(t)/5-g'cos(t)/(8g'^2+2). Combining the auxiliary and particular components, y=f(t)=fH+fP=Ae^-3t + Be^t-sin(t)/5-g'cos(t)/(8g'^2+2). If we can replace g' with 1 then D=-1/10, C=-1/5, y=Ae^-3t + Be^t-sin(t)/5-cos(t)/10 and x=t. The initial conditions have f(0)=0=f'(0), so 0=A+B-1/10 and -3A+B-1/5=0. From these, -3A+1/10-A-1/5=0, -4A-1/10=0, A=-1/40, 0=-1/40+B-1/10, making B=1/8. Thus, y=(e^t)/8-(e^-3t)/40-sin(t)/5-cos(t)/10, x=t or y=(e^x)/8-(e^-3x)/40-sin(x)/5-cos(x)/10. CHECK: y'=(e^t)/8+3e^(-3t)/40-cos(t)/5+sin(t)/10; x'=g'=1, y'=f', dy/dx=dy/dt=f'; y"=(e^t)/8-9e^(-3t)/40+sin(t)/5+cos(t)/10.  y"+2dy/dx-3y becomes: (e^t)/8-9e^(-3t)/40+sin(t)/5+cos(t)/10 [this is y"] +(e^t)/4+3e^(-3t)/20-2cos(t)/5+sin(t)/5 [this is 2dy/dx=2y'] -3(e^t)/8+3(e^-3t)/40+3sin(t)/5+3cos(t)/10= [this is -3y] (e^t)(1/8+1/4-3/8) [=0] +e^(-3t)(-9/40+3/20+3/40) [=0] +sin(t)(1/5+1/5+3/5) [=sin(t)*1]  +cos(t)(1/10-2/5+3/10)= [=0] sin(t) [ADDENDUM: Why the auxiliary, or characteristic, equation works. Consider the equation y=Ae^ax+Be^bx, where a and b are constants. y'=aAe^ax+bBe^bx; y"=a^2Ae^ax+b^2Be^bx. Now consider a 2nd degree DE: y"+Py'+Qy=0, where P and Q are constants. We can replace the derivatives: a^2Ae^ax+b^2Be^bx+PaAe^ax+PbBe^bx+QAe^ax+QBe^bx=0, which can be written: Ae^ax(a^2+Pa+Q)+Be^bx(b^2+Pb+Q)=0. Since the exponential components cannot be <0, the quadratics in a and b must each be zero and they must be the roots of the same equation: e.g., z^2+Pz+Q=0 where the roots are z=a and b, with P and Q as the coefficients. In the question, P=2 and Q=-3 so z^2+2z-3=0 is the quadratic, so (z+3)(z-1)=0 and a=-3 and b=1, so fH=Ae^-3t+Be^t.]

### 53 divided 898 ??

do you need a  decimal quotient? or fraction? if decimal:     53  /  898  =   0.0590200... 1st: add a decimal point to 53 then 0... put the point above in the quotient 2nd: divide as 530 by 898   , the quotient is 0 3rd: place another 0 in 530 it becomes 5300, which when divided by 898 = 5 4th: multiply 5 by 898 = 4490, subract this from 5300 = 810, then put another 0. 5th: 8100 divided by 898 = 9 , multiply 9 by 898 = 8082, subtract this from 8100.. 6th: continue putting 0 to the difference then divide again...

### how to find slope and y-intercept of y=3x-5

Any line equation which is in the form y=m*x + b is called slope-intercept form. What that gives you is the slope is the number which is multiplied by X (called the coefficient) while the slope intercept is the Y value when X=0. So if we take your first equation: y = 3x - 5 The slope (or m) = 3 The Y intercept = -5 Slope is defined as either "the change in y divided by the change in x" or "rise over run", so that 3, really can be considered as 3/1. Each change in X of 1 will change Y by 3. So slope = 3/1. Graphing any line can come from 2 methods. 1) create a table of values or 2) calculate a single point (x,y) and then apply the slope to find a second coordinate pair (x,y). For the equation y=3x - 5: y = 3x - 5 x y 0 -5 1 -2 Replacing the values for X into the original equation, will come out to the values for Y. So when X=0, y = 3*0 - 5, or simply -5.  When X = 1, Y = 3*1 -5 or simply -2. With these two coordinate pairs of points, you can plot a dot on your graph at each (0,-5) and (1, -2) then draw a straight line which goes through each point and continues straight in each direction, probably ending each end of this line with an arrow to show it continues. I do not have a way to include a picture here of a graph. The second way to graph a line is as follows. You need a starting point that will be on the line. Given the form of y=mx + b, you have a simple point which can be used at the y-intercept. The point is always in the form of (0, b), so in this case it is (0,-5). From that first point, you will apply your slope. The slope is 3 (or technically 3/1 which is a big help). From the initial point (0,-5) you will go UP 3 and RIGHT 1 and that will be the next point that is easy to find. Connect those two points and continue the line in each direction and that will be a graph of your line. Anytime your slope is positive, you will use it by going UP the top number (numerator of the slope) and going RIGHT the bottom number (denominator of the slope). But if your slope is negative (like your second problem is) you will use it by going DOWN the numerator and then RIGHT the denominator. The equation is y= -2/3x + 4 ( / = divided). I need to state the slope and y-intercept. I will not walk through the details on the second equation, but you should have enough information to get the answer from the above example.

### explain what it means if you divide a quantity between 2 people in this ratio 1:1,0:1 and 1:0

Dividing a quantity between 2 people in the ratio 1:1.  You get the same amount as me. Dividing a quantity between 2 people in the ratio 0:1.  You get none, I get all of it. Dividing a quantity between 2 people in the ratio 1:0.  You get all of it, I get none. Actually the last two (1:0 and 0:1) are really the same thing because the problem doesn't define ahead of time which person/quantity is the first one and which is the second one.

### does 5 divide by 0 and 0 divide by 5 have same the answer?

yu dont getta divide bi zero...that wood giv infinity yu will get all the guvt krats mad at yu

### how do you solve this using a gausian reduction using the three equations? 4x+z=3,2x-y=2,and 3y+2z=0

how do you solve this using a gausian reduction using the three equations? 4x+z=3,2x-y=2,and 3y+2z=0 I think gaussian reduction is similar to back substitution, but with all the equation shaving different variables... just not sure how to do it. You create a matrix using the constants in the equations. Below, you will see approximately what the matrix would look like. Unfortunately, it is impossible to get it to display properly on this page. ┌                       ┐ │ 4   0   1  |   3  │ │ 2  -1  0   |  2   │ │ 0   3   2  |   0   │ └                        ┘ The idea is to perform the same math procedures on these matrix rows that you would perform on the full equations. We want the first row to be  1 0 0 | a, meaning that whatever value appears as the a entry is the value of x. The second row has to be  0 1 0 | b,  and the third row has to be  0 0 1 | c. Multiply row 2 by 2. ┌                      ┐ │ 4   0   1  |   3  │ │ 4  -2   0  |  4   │ │ 0   3   2  |   0   │ └                       ┘ Now subtract row 2 from row 1, and replace row 2 with the result. ┌                       ┐ │ 4   0   1  |   3   │ │ 0  2   1   |  -1   │ │ 0   3   2  |   0   │ └                       ┘ Multiply row 2 by 2. ┌                       ┐ │ 4   0   1  |   3   │ │ 0  4    2  |  -2   │ │ 0   3   2  |   0   │ └                       ┘ Subtract row 3 from row 2, replacing row 2. ┌                        ┐ │ 4   0   1  |   3   │ │ 0  1    0  |  -2   │ │ 0   3   2  |   0   │ └                        ┘ Multiply row 2 by 3 and subtract row 3, replacing row 3. ┌                       ┐ │ 4   0   1  |   3   │ │ 0  1    0  |  -2   │ │ 0   0  -2  |   -6  │ └                       ┘ Divide row 3 by -2. ┌                       ┐ │ 4   0   1  |   3   │ │ 0  1    0  |  -2   │ │ 0   0   1  |   3   │ └                       ┘ Subtract row 3 from row 1, replacing row 1. ┌                      ┐ │ 4   0   0  |   0  │ │ 0  1    0  |  -2  │ │ 0   0  1  |   3   │ └                      ┘ Divide row 1 by 4. ┌                      ┐ │ 1   0   0  |   0  │ │ 0  1    0  |  -2  │ │ 0   0   1  |   3  │ └                      ┘ Row 1 shows that x = 0 Row 2 shows that y = -2 Row 3 shows that z = 3 Plug those values into the original equations to check the answer. 4x + z = 3 4(0) + 3 = 3 0 + 3 = 3 3 = 3 2x – y = 2 2(0) – (-2) = 2 0 + 2 = 2 2 = 2 3y + 2z = 0 3(-2) + 2(3) = 0 -6 + 6 = 0 0 = 0

### how to solve for x with fractions

Simplifying x3 + 3x2 + -4x = 0 Reorder the terms: -4x + 3x2 + x3 = 0 Solving -4x + 3x2 + x3 = 0 Solving for variable 'x'. Factor out the Greatest Common Factor (GCF), 'x'. x(-4 + 3x + x2) = 0 Factor a trinomial. x((-4 + -1x)(1 + -1x)) = 0 Subproblem 1 Set the factor 'x' equal to zero and attempt to solve: Simplifying x = 0 Solving x = 0 Move all terms containing x to the left, all other terms to the right. Simplifying x = 0 Subproblem 2 Set the factor '(-4 + -1x)' equal to zero and attempt to solve: Simplifying -4 + -1x = 0 Solving -4 + -1x = 0 Move all terms containing x to the left, all other terms to the right. Add '4' to each side of the equation. -4 + 4 + -1x = 0 + 4 Combine like terms: -4 + 4 = 0 0 + -1x = 0 + 4 -1x = 0 + 4 Combine like terms: 0 + 4 = 4 -1x = 4 Divide each side by '-1'. x = -4 Simplifying x = -4 Subproblem 3 Set the factor '(1 + -1x)' equal to zero and attempt to solve: Simplifying 1 + -1x = 0 Solving 1 + -1x = 0 Move all terms containing x to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + -1x = 0 + -1 Combine like terms: 1 + -1 = 0 0 + -1x = 0 + -1 -1x = 0 + -1 Combine like terms: 0 + -1 = -1 -1x = -1 Divide each side by '-1'. x = 1 Simplifying x = 1 Solution x = {0, -4, 1}

### What is Mike's speed given the information below

In the first part of the problem, Andrew, traveling at a speed of v1, travels 4 miles, while Mike, traveling at speed v2, travels (d - 4) miles. They leave from their respective starting points at the same time, so the time it takes for them to meet and pass is the same for both. t = d / s 1. t1 = 4/v1 = (d - 4) / v2 Multiply both sides by v1 to eliminate the denominator on the left side, and multiply both sides by v2 to eliminate the denominator on the right side. 2. (4 / v1) * v1 * v2 = ((d - 4) / v2) * v1 * v2 3. 4v2 = (d - 4) v1 Divide both sides by four to get the value of v2 4. v2 = ((d - 4)v1) / 4 In the second part of the problem, Andrew has reached Simburgh (d) and turned around, travelling another 2 miles, or (d + 2), while Mike has reached Kirkton and turned around, travelling another (d - 2) miles, for a total of d + (d - 2) = (2d - 2) miles. Again, their times are equal when they meet and pass. 5. t2 = (d + 2) / v1 = (2d - 2) / v2 As in the first part, multiply both sides by v1 to eliminate the denominator on the left side, and multiply both sides by v2 to eliminate the denominator on the right side. 6. ((d + 2) / v1) * v1 * v2 = ((2d - 2) / v2) * v1 * v2 7. (d + 2)v2 = (2d - 2)v1 Divide both sides by (d + 2) go get the value of v2 8. v2 = ((2d - 2)v1) / (d + 2) We have two equations for v2, equation 4 and equation 8. The problem states that v2 remains the same throughout the journey. Therefore: ((d - 4)v1) / 4 = ((2d - 2)v1) / (d + 2) Once again, multiply both sides by both denominators. (((d - 4)v1) / 4) * 4 * (d + 2) = (((2d - 2)v1) / (d + 2)) * 4 * (d + 2) v1 * (d - 4) * (d + 2) = v1 * (2d - 2) * 4 Divide both sides by v1, eliminating speed from this equation. (d - 4) * (d + 2) = (2d - 2) * 4 d^2 - 4d + 2d - 8 = 8d - 8 d^2 - 2d - 8 = 8d - 8 Subtract 8d from both sides and add 8 to both sides. (d^2 - 2d - 8) - 8d + 8 = (8d - 8) + 8d + 8 = 0 d^2 - 10d = 0 Factor out a d on the left side. d * (d - 10) = 0 One of those factors is equal to 0 (to give a zero answer). d = 0 doesn't work; we already know the distance is more than 4 miles. d - 10 = 0 d = 10    <<<<<   That's the answer to the first question, how far is it? We'll substitute that into equation 4 to find v2 in relation to v1. v2 = ((d - 4)v1) / 4 = ((10 - 4)v1) / 4 v2 = 6v1 / 4 = (6/4)v1 v2  = 1.5 * v1   <<<<<< That's the answer to the second question No matter what speed you choose for Andrew (v1), Mike's speed is one-and-a-half times faster. Let's set Andrew's speed to 6mph and solve equation 1. t1 = 4/v1 = (d - 4) / v2 t1 = 4mi / 6mph = (10 - 4) / (1.5 * 6mph) 4/6 hr = 6/9 hr 2/3 hr = 2/3 hr With Andrew travelling at 4 mph, and Mike travelling at 6 mph, it took both of them 2/3 of an hour to reach a point 4 miles from Kirkton.